Q	uesti	on	Answer	Marks	Guidance
1	а	i	Length from A to B = 8.0 (cm)	C1	Allow \pm 0.1 cm
			displacement = 400 (km) or time = 1500 (s)		
			average velocity = $400 \times 10^3/1500$	C1	Possible ecf within the calculation for an incorrect value for length AB .
			average velocity = 270 (m s ⁻¹)	A1	Note no credit if distance is used.
		ii	(The average speed is different because) the <u>distance</u> (travelled) is different / not the same / greater than the <u>displacement</u>	B1	
	b	i	distance = $2 \times \pi \times 4.2 \times 10^8$ speed = $\frac{2 \times \pi \times 4.2 \times 10^8}{1.5 \times 10^5}$	C1	
			speed = 1.8×10^4 (m s ⁻¹)	A1	Note : Answer to 3 sf is 1.76×10^4 (m s ⁻¹) Not 5600π (m s ⁻¹)
		ii	$(0 = u^2 - 2as)$ $(1.3 \times 10^3)^2 = 2 \times a \times 470 \times 10^3$ (Any subject)	C1	Allow full credit for 'mgh = $\frac{1}{2}$ mu ² ' approach
			$a = \frac{(1.3 \times 10^3)^2}{2 \times 470 \times 10^3}$ (a must be the subject)	C1	Ignore signs
			acceleration = 1.8 (m s ⁻²)	A1	Allow : 2 marks for 1.8×10^{n} ; $n \neq 0$
			Total	9	

Q	Question		Answer	Marks	Guidance
2	(a)		Object moves into region <u>3</u> (net) force to left / 1 (N) to the left / 8 (N) > 7 (N) <u>and</u> (net) force down / 2 (N) down / 12 (N) > 10 (N)	M1 A1	Allow use of labelled arrows, e.g \downarrow 2 (N)
	(b)		(When an object is in equilibrium the) \underline{sum} of clockwise moments (about a point) = \underline{sum} of anticlockwise moments (about the same point)	B1	Allow : summation sign Σ
	(c)		50 × 46 = weight × 14 weight = 164 (N) mass = 164/9.81 mass = 16.7 (kg) or 17 (kg)	C1 C1 A1	Possible ecf for weight calculated. Note : Using '50 × 46 = weight × 32' gives an incorrect weight of 71.9 (N). However, 1 mark can be scored through ecf for a mass of 7.3 (kg) Allow : 3 marks for 'weight = 160 N, mass = 16.3 kg or 16 kg'
			Total	6	

Question		ion	Expected Answers		Additional Guidance	
3	(a)		A quantity that has (both) magnitude / size and direction	B1	Not 'A quantity that has direction'	
	(b)		Circled /underlined quantities are: acceleration, displacement and weight	B1	Note: All three need to be identified for a mark	
	(c)	(i)	<u>Constant</u> / <u>steady</u> / <u>uniform</u> acceleration (up to 4 s) Or Velocity increases at a <u>steady</u> / <u>constant</u> / <u>uniform</u> rate Or Has acceleration of 3.5 (m s ⁻²)	B1	Not Accelerates up to 4 s / 'uniform motion' for the first B1 mark Not 'Accelerates at a constant rate'.	
			<u>Constant</u> / <u>steady</u> / <u>uniform</u> velocity (after 4 s) Or Zero acceleration Or Travels at a velocity of 24 (m s ⁻¹)	B1	Allow: 'speed' instead of velocity Allow: 2 mark for 'Constant acceleration and then constant speed / velocity'	
		(ii)	distance = area (under graph)	C1	Allow: The C1 mark is for distance = $\frac{1}{2}(10+24) \times 4.0$	
			distance = 68 (m)	A1	Allow: Bald 68 (m) scores 2 marks Bald $\frac{1}{2}(4 \times 14)$ or 28 (m) scores 1 mark for 'area of triangle'	
		(iii) 1	Answer in the range: 1.1 to 1.2 (s)	B1		
		(iii) 2	Same areas under graphs			
		2	$14t = 10t + (0.5 \times 3.5 \times t^2)$	C1	Note: The C1 mark is for substitution	
			<i>t</i> = 2.28 (s) ≈ 2.3 (s)	A1	Allow: Bald 2.3 (s) scores 2 marks Allow: Bald ' $t = 2 \times$ (iii)1.' Scores 2 marks	
			Total	9		

Question		Expected Answers		Additional Guidance	
4 (a))	$F_H = 20\cos 38 = 15.76 \approx 15.8$ (N)	B1	Allow: 2 sf answers of 16 (N) and 12 (N)	
		$F_V = 20\sin 38 = 12.31 \approx 12.3$ (N)	B1	Allow: 1 mark if vertical and horizontal components have been interchanged	
(b)) (i)	net force vertically = 0 / weight = upward forces	C1		
		weight = 12.3 + 12.3	C1	Possible ecf from F_{V} value from (a)	
		weight = 24.6 (N) ≈ 25 (N)	A0		
		correct triangle of forces diagram	C1	At least one label needed (e.g: 20, correct angle, etc) – arrows not needed	
		correct determination of weight	C1	Weight in the range 22 -27 (N)	
		weight = 24.6 (N) ≈ 25 (N)	A0		
	(ii)	mass = $\frac{25}{9.81}$ = 2.55 (kg)	C1	Note: 2.51 kg if 24.6 N is used	
		density = $\frac{2.55}{2.9 \times 10^{-4}}$	C1		
		density = 8.8×10^3 (kg m ⁻³)	A1	Note: 'weight/volume' scores zero	
				Note : Answer is 8.7×10^3 if 2.51 kg is used	
				Allow: 2 marks if $g = 10$ used and 25 N \rightarrow 2.5 kg $\therefore \rho = 8620$ (kg m ⁻³)	
				Note: Bald 8.7× 10^3 or 8.8 × 10^3 scores 3 marks	
				Allow : 1 mark if 20 N is used instead of 25 N – this gives 7030 (kg m^{-3})	
		Total	7		